北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 金门 江西 山东 河南 湖北 武汉 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 钓鱼岛

初中数学函数学习方法与思想_中考数学

初中数学函数学习方法与思想

  函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,在初中数学知识大纲中,函数知识占了很大的知识体系比例。
  学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就等于数学中考成功了一大半,数学成绩自然会攀上高峰,同时,函数的思想也是学好其他理科类学科的基础。
  怎样才能学好初中数学函数呢?
  在函数的学习当中,学生不仅要在函数知识上下功夫,而且还应该追求解决问题的常规方法基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数学习。

  1、注重类比思想
  不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此阳光学习网刘老师指出,采用类比的方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。
  2、注重数形结合思想
  数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
  函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。

  3、注重自变量的取值范围
  自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。
  4、注重实际应用问题
  学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。

m.yuwen360.com 鲁ICP备15023639号-1 | 免责声明